Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays.
نویسندگان
چکیده
A major barrier to understanding the role of polymorphic DNA repair genes for environmental cancer is that the functions of variant genotypes are largely unknown. Using our cytogenetic challenge assays, we conducted an investigation to address the deficiency. Using X-rays or ultraviolet (UV) light, we irradiated blood lymphocytes from 80 nonsmoking donors to challenge the cells to repair the induced DNA damage, and we analyzed expression of chromosome aberrations (CA) specific to the inducing agents. We have genotyped polymorphic DNA repair genes preferentially involved with base excision repair (BER) and nucleotide excision repair (NER) activities (XRCC1, XRCC3, APE1, XPD) corresponding to the repair of X-ray- and UV light-induced DNA damage, respectively. We expected that defects in specific DNA repair pathways due to polymorphisms would cause corresponding increases of specific CA. From our data, XRCC1 399Gln and XRCC3 241Met were associated with significant increases in chromosome deletions compared with the corresponding homozygous wild types (18.27 1.1 vs 14.79 1.2 and 18.22 0.99 vs 14.20 1.39, respectively); XPD 312Asn and XPD 751Gln were associated with significant increases in chromatid breaks compared with wild types (16.09 1.36 vs 11.41 0.98 and 16.87 1.27 vs 10.54 0.87, respectively), p < 0.05. The data indicate that XRCC1 399Gln and XRCC3 241Met are significantly defective in BER, and the XPD 312Asn and XPD 751Gln are significantly defective in NER. In addition, the variant genotypes interact significantly, with limited overlap of the two different repair pathways.
منابع مشابه
Association of two polymorphisms in MSH2 and XRCC1 genes with multiple sclerosis in Iranian population
Introduction: To protect genomes of all organisms from internal and external damages and maintain the genome integrity and the continuity of life, repair system has been developed in all living cells. Defects in repair system are responsible for various kinds of disease including cancers and neurodegenerative diseases such as Multiple sclerosis (MS). The relationship between various compone...
متن کاملYeast-based assays for characterization of the functional effects of single nucleotide polymorphisms in human DNA repair genes
DNA repair mechanisms maintain genomic integrity upon exposure to various types of DNA damage, which cause either single- or double-strand breaks in the DNA. Here, we propose a strategy for the functional study of single nucleotide polymorphisms (SNPs) in the human DNA repair genes XPD/ERCC2, RAD18, and KU70/XRCC6 and the checkpoint activation gene ATR that are essentially involved in the cell ...
متن کاملStudy of the association FokI polymorphisms of the XRCC3 gene with the risk of breast cancer in women: brief report
Background: Breast cancer is one of the most common worldwide malignancies among women. Biological data suggest that damage induced by endogenous and exogenous factors affects the integrity of DNA and associated with susceptibility to breast cancer. Single nucleotide polymorphisms (SNPs) in DNA repair genes can associated with differences in the repair efficiency of DNA damage and may affect br...
متن کاملFunctional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays.
The functional characterization of nonsynonymous single nucleotide polymorphisms in human mismatch repair (MMR) genes has been critical to evaluate their pathogenicity for hereditary nonpolyposis colorectal cancer. We previously established an assay for detecting loss-of-function mutations in the MLH1 gene using a dominant mutator effect of human MLH1 expressed in Saccharomyces cerevisiae. The ...
متن کاملAssessment of adaptive response of gamma radiation in the operating room personnel exposed to anesthetic gases by measuring the expression of Ku 80, Ligase1 and P53 genes
Introduction: Staffs of operating room are continuously exposed to anesthetic gases and ionizing radiation. Adaptive response, as a defense mechanism, will occur when cells become exposed to a low dose of factors harming DNA that causes in the next exposures to higher doses o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 111 شماره
صفحات -
تاریخ انتشار 2003